Convex Discrete Optimization
نویسنده
چکیده
We develop an algorithmic theory of convex optimization over discrete sets. Using a combination of algebraic and geometric tools we are able to provide polynomial time algorithms for solving broad classes of convex combinatorial optimization problems and convex integer programming problems in variable dimension. We discuss some of the many applications of this theory including to quadratic programming, matroids, bin packing and cutting-stock problems, vector partitioning and clustering, multiway transportation problems, and privacy and confidential statistical data disclosure. Highlights of our work include a strongly polynomial time algorithm for convex and linear combinatorial optimization over any family presented by a membership oracle when the underlying polytope has few edge-directions; a new theory of so-termed n-fold integer programming, yielding polynomial time solution of important and natural classes of convex and linear integer programming problems in variable dimension; and a complete complexity classification of high dimensional transportation problems, with practical applications to fundamental problems in privacy and confidential statistical data disclosure.
منابع مشابه
A HYBRID ALGORITHM FOR SIZING AND LAYOUT OPTIMIZATION OF TRUSS STRUCTURES COMBINING DISCRETE PSO AND CONVEX APPROXIMATION
An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the...
متن کاملNon-homogeneous continuous and discrete gradient systems: the quasi-convex case
In this paper, first we study the weak and strong convergence of solutions to the following first order nonhomogeneous gradient system $$begin{cases}-x'(t)=nablaphi(x(t))+f(t), text{a.e. on} (0,infty)\x(0)=x_0in Hend{cases}$$ to a critical point of $phi$, where $phi$ is a $C^1$ quasi-convex function on a real Hilbert space $H$ with ${rm Argmin}phineqvarnothing$ and $fin L^1(0...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملFundamentals in Discrete Convex Analysis
“Discrete Convex Analysis” is aimed at establishing a novel theoretical framework for solvable discrete optimization problems by means of a combination of the ideas in continuous optimization and combinatorial optimization. The theoretical framework of convex analysis is adapted to discrete settings and the mathematical results in matroid/submodular function theory are generalized. Viewed from ...
متن کاملDiscrete convex analysis
Discrete convex analysis [18, 40, 43, 47] aims to establish a general theoretical framework for solvable discrete optimization problems by means of a combination of the ideas in continuous optimization and combinatorial optimization. The framework of convex analysis is adapted to discrete settings and the mathematical results in matroid/submodular function theory are generalized. Viewed from th...
متن کاملApplications of Discrete Convex Analysis to Mathematical Economics
Discrete convex analysis, which is a unified framework of discrete optimization, is being recognized as a basic tool for mathematical economics. This paper surveys the recent progress in applications of discrete convex analysis to mathematical economics.
متن کامل